Bits, bytes and digital information

 COMPSCI111/ 111G
Today's lecture

- Understand the difference between analogue and digital information
- Convert between decimal numbers and binary numbers

Analogue vs digital information

- Information in the real world is continuous
- Continuous signal

- Information stored by a computer is digital
- Represented by discrete numbers

Encoding information

Real world information is stored by a computer using numbers

- Visual information

Image

Pixels

11111111111111111111111 01111111111111111111111 00001111111111111111111 00000011111111111111111 00000000011111111111111 44444000001111111111111 75444000000011111111111 55554401000000111111111 33367544000000011111111 22283554444000000111111 99928357544000000011111 99999233657504000001111 99999983666554400000011 99999928338674400000001

1. Give each pixel colour a number.
2. Let the computer draw the numbers as coloured pixels (eg. black = 0).

Encoding information

Sound information

1. Give each sample a number (height of green box).
2. Let the computer move the loudspeaker membrane according to the samples.

Numbers and Computing

- Numbers are used to represent all information manipulated by a computer.

Computers use the binary number system:

- Binary values are either 0 or 1 .
- We use the decimal number system:
- 0 to 9 are decimal values.

Representing digital data

- At the lowest level, a computer is an electronic machine.
- works by controlling the flow of electrons
- Easy to recognize two conditions:
> presence of a voltage - we'll call this state " 1 "
- absence of a voltage - we'll call this state "0"
- Could base state on value of voltage, but control and detection circuits much more complex.
- compare turning on a light switch to measuring or regulating voltage

Representing Decimal Numbers

- We could use a series of dials
- Each dial goes from 0 to 9 .
- Information is stored discretely
- Finite number of states - 10 per dial.
- No in-between states.
- Decimal number system
- $1^{\text {st }}$ dial from right: 10^{0}
- $2^{\text {nd }}$ dial from right: 10^{1}
- $3^{\text {rd }}$ dial from right: 10^{2}
- etc...

100's
10's
1's

$$
6 \times 10^{2}+3 \times 10^{1}+8 \times 10^{0}=638
$$

Exercises

- The following two questions relate to dials that have 10 different states, as discussed in the previous slide.
- Given a machine that uses 4 dials, how many different numbers can we represent?
- If we want to represent 256 different values, how many dials do we need?

Exercises

- The following two questions relate to dials that have 10 different states, as discussed in the previous slide.
- Given a machine that uses 4 dials, how many different numbers can we represent?

10000

- If we want to represent 256 different values, how many dials do we need?

3

Switches

- A dial is complicated.
- Each dial has 10 different states (0-9).
- Physically creating circuits that distinguish all states is complicated.
- Would need to distinguish 10 different strengths of electricity (voltages).
- Switches are simple.
- Each switch is off or on (0 or 1).
- Physically creating the circuits is easy.
- Switch off: electrical current cannot flow.
- Switch on: electrical current can flow.

Binary Digital System

Digital system:

- finite number of symbols

Binary (base two) system:

- has two states: 0 and 1

Basic unit of information is the binary digit, or bit.

- Values with more than two states require multiple bits.
- A collection of two bits has four possible states: 00, 01, 10, 11
- A collection of three bits has eight possible states: 000, 001, 010, 011, 100, 101, 110, 111
- A collection of n bits has $2 n$ possible states.

Bits and Bytes

- Each binary number is known as a Binary digIT, or bit.
- A bit can be either a 0 or a 1

Bits are used in groups.

- A group of eight bits is referred to as a byte.

Using Binary Numbers

- How many different values/ states can we have with:

1 bit:
 2 bits: 3 bits:

1

$$
\begin{aligned}
& \text { * al a y alo }
\end{aligned}
$$

Exercises

How many different values can we represent with a byte?

- If we want to represent 30 different values, how many bits would we need?

Exercises

How many different values can we represent with a byte?
> 256

- If we want to represent 30 different values, how many bits would we need?
> 5 bits

Integers

- Non-positional notation
> could represent a number (" 5 ") with a sequence of marks

- Weighted positional notation
- like decimal numbers: "329"
- " 3 " is worth 300 , because of its position, while " 9 " is only worth 9

Integers (cont.)

- An n-bit unsigned integer represents any of 2^{n} (integer) values from 0 to 2^{n-1}.

2^{2}	2^{1}	2^{0}	Value
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Converting binary to decimal

Convert the number 110 from binary to decimal

2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}	
32	16	8	4	2	1	
			1	1	0	
			1×4	1×2	0×1	
			4	2	0	$=6$

Converting binary to decimal

Convert the number 10110 from binary to decimal

2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}	
32	16	8	4	2	1	
	1	0	1	1	0	
	1×16	0×8	1×4	1×2	0×1	
	16	0	4	2	0	$=22$

Converting decimal to binary

- Put a 1 in the most significant column less than N
- Calculate remainder $=(\mathrm{N}$ - value $)$
- Repeat with remainder

Example: Convert 29 to binary

2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}	
32	16	8	4	2	1	
	1	1	1	0	1	
	1×16	1×8	1×4	0×2	1×1	
	16	8	4	0	1	$=29$

Exercises

- What is the decimal equivalent of 101111 ?
- What is the binary equivalent of 123 ?

Exercises

- What is the decimal equivalent of 101111?

47

- What is the binary equivalent of 123 ?
- 1111011

Prefixes

- A group of 8 bits is a byte
- A group of 4 bits is a nibble
- Bytes are the common unit of measurement for memory capacity

There are two sets of prefixes:

- Decimal
- Binary

Decimal prefixes

$10^{\text {n }}$	Prefix	Symbol	Decimal
1	none		1
10^{3}	kilo	K	1000
10^{6}	mega	M	$1,000,000$
10^{9}	giga	G	$1,000,000,000$
10^{12}	tera	T	$1,000,000,000,000$
10^{15}	peta	P	$1,000,000,000,000,000$
10^{18}	exa	E	$1,000,000,000,000,000,000$
10^{21}	zetta	Z	$1,000,000,000,000,000,000,000$

Binary prefixes

$2^{\text {n }}$	Prefix	Symbol	Decimal
2^{0}	none		1
2^{10}	kibi	$\mathbf{K i}$	1024
2^{20}	mebi	$\mathbf{M i}$	$1,048,576$
2^{30}	gibi	$\mathbf{G i}$	$1,073,741,824$
2^{40}	tebi	$\mathbf{T i}$	$\mathbf{1 , 0 9 9 , 5 1 1 , 6 2 7 , 7 7 6}$
2^{50}	pebi	$\mathbf{P i}$	$\mathbf{1 , 1 2 5 , 8 9 9 , 9 0 6 , 8 4 2 , 6 2 4}$
2^{60}	exbi	$\mathbf{E i}$	$\mathbf{1 , 1 5 2 , 9 2 1 , 5 0 4 , 6 0 6 , 8 4 6 , 9 7 6}$
2^{70}	zebi	$\mathbf{Z i}$	$1,180,591,620,717,411,303,424$

Prefixes in Computer Science

- Both decimal and binary prefixes are used in Computer Science
- Decimal prefixes are preferred because they are easier to calculate, however binary prefixes are more accurate

Binary prefix	Decimal prefix	Value (bytes)
8 bits	1 byte	same
$1 \times \mathrm{KiB}$ $\left(1 \times 2^{10}\right.$ bytes $)$	1 KB $\left(1 \times 10^{3}\right.$ bytes $)$	$1024 \neq 1000$
1 MiB $\left(1 \times 2^{20}\right.$ bytes $)$	1 MB $\left(1 \times 10^{6}\right.$ bytes $)$	$1,048,576 \neq 1,000,000$

Example - hard disk sizes

- A 160GB hard disk is equivalent to 149.01GiB
- 160GB = 160×109
- $149.01 \mathrm{GiB}=(160 \times 109) \div 230$

Exercises

- Which has more bytes, 1 KB or 1 KiB ?
- How many bytes are in 128MB?

Exercises

- Which has more bytes, 1 KB or 1 KiB ?
- $1 \mathrm{~KB}=1000$ bytes while $1 \mathrm{KiB}=1024$ bytes
- How many bytes are in 128MB?
- $128 \times 106=128,000,000$ bytes

Summary

- Computers use the binary number system
- We can convert numbers between decimal and binary
- Decimal prefixes and binary prefixes are used for counting large numbers of bytes

